Physical violence detection with movement sensors
With the development of movement sensors, activity recognition becomes more and more popular. Compared with daily-life activity recognition, physical violence detection is more meaningful and valuable. This paper proposes a physical violence detecting method. Movement data of acceleration and gyro are gathered by role playing of physical violence and daily-life activities. Time domain features and frequency domain ones are extracted and filtered to discribe the differences between physical violence and daily-life activities. A specific BPNN trained with the L-M method works as the classifier. Altogether 9 kinds of activities are involved. For 9-class classification, the average recognition accuracy is 67.0%, whereas for 2-class classification, i.e. activities are classified as violence or daily-life activity, the average recognition accuracy reaches 83.7%.