Incorporating high-level and low-level cues for pain intensity estimation

Pain is a transient physical reaction that exhibits on human faces. Automatic pain intensity estimation is of great importance in clinical and health-care applications. Pain expression is identified by a set of deformations of facial features. Hence, features are essential for pain estimation. In this paper, we propose a novel method that encodes low-level descriptors and powerful high-level deep features by a weighting process, to form an efficient representation of facial images. To obtain a powerful and compact low-level representation, we explore the way of using second-order pooling over the local descriptors. Instead of direct concatenation, we develop an efficient fusion approach that unites the low-level local descriptors and the high-level deep features. To the best of our knowledge, this is the first approach that incorporates the low-level local statistics together with the high-level deep features in pain intensity estimation. Experiments are evaluated on the benchmark databases of pain. The results demonstrate that the proposed low-to-high-level representation outperforms other methods and achieves promising results.

Yang Ruijing, Hong Xiaopeng, Peng Jinye, Feng Xiaoyi, Zhao Guoying

A4 Article in conference proceedings

2018 24th International Conference on Pattern Recognition (ICPR)

R. Yang, X. Hong, J. Peng, X. Feng and G. Zhao, "Incorporating high-level and low-level cues for pain intensity estimation," 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, 2018, pp. 3495-3500. doi: 10.1109/ICPR.2018.8545244

https://doi.org/10.1109/ICPR.2018.8545244 http://urn.fi/urn:nbn:fi-fe201902266283