CAD3

Speeding, slowing down, and sudden acceleration are the leading causes of fatal accidents on highways. Anomalous driving behavior detection can improve road safety by informing drivers who are in the vicinity of dangerous vehicles. However, detecting abnormal driving behavior at the city-scale in a centralized fashion results in considerable network and computation load, that would significantly restrict the scalability of the system. In this paper, we propose CAD3, a distributed collaborative system for road-aware and driver-aware anomaly driving detection. CAD3 considers a decentralized deployment of edge computation nodes on the roadside and combines collaborative and context-aware computation with low-latency communication to detect and inform nearby drivers of unsafe behaviors of other vehicles in real-time. Adjacent edge nodes collaborate to improve the detection of abnormal driving behavior at the city-scale. We evaluate CAD3 with a physical testbed implementation. We emulate realistic driving scenarios from a real driving data set of 3,000 vehicles, 214,000 trips, and 18 million trajectories of private cars in Shenzhen, China. At the microscopic (road) level, CAD3 significantly improves the accuracy of detection and lowers the number of potential accidents caused by false negatives up to four times and 24 times as compared to distributed standalone and centralized models, respectively. CAD3 can scale up to 256 vehicles connected to a single node while keeping the end-to-end latency under 50 ms and a required bandwidth below 5 mbps. At the mesoscopic (driver-trip) level, CAD3 performs stable and accurate detection over time, owing to local RSU interaction. With a dense deployment of edge nodes, CAD3 can scale up to the size of Shenzhen, a megalopolis of 12 million inhabitant with over 2 million concurrent vehicles at peak hours.